

RENAULT TRUCKS E-TECH D WIDE

Information environnementale

Renault Trucks

Renault Trucks est engagé pour le progrès de la mobilité durable des marchandises et œuvre à la réduction des effets de ses produits sur l'environnement. Les véhicules Renault Trucks sont conçus pour garantir à la fois une conformité aux législations limitant les rejets atmosphériques et une consommation de carburant toujours moindre réduisant ainsi les émissions de dioxyde de carbone.

Outre des solutions de transport toujours plus économes en carburant, Renault Trucks offre une gamme complète de véhicules à énergies de substitution : 100 % électriques ; véhicules au gaz naturel ; biodiesel .

Renault Trucks applique une politique environnementale assise sur des engagements précis et un système de management rigoureux associant son réseau de distributeurs, ses fournisseurs et ses partenaires. La fabrication des véhicules de Renault Trucks est réalisée dans des usines certifiées ISO 14001. Elle est organisée pour limiter la consommation d'énergie, d'eau et de matières premières mais également pour réduire la production de déchets. Les produits sont conçus en vue d'une réutilisation maximale des matériaux.

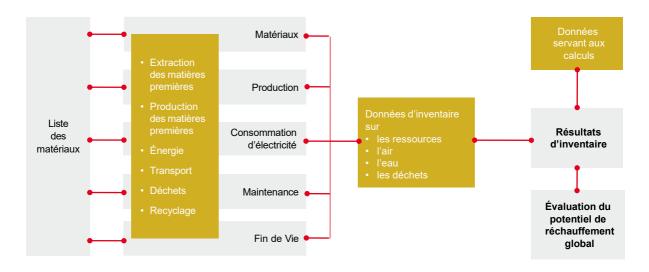
L'information environnementale sur le produit est issue des analyses de cycle de vie (A.C.V.) réalisées sur nos véhicules. L'analyse de cycle de vie couvre toutes les phases de vie d'un camion, depuis la production des matières premières jusqu'à l'élimination finale et au recyclage. Elle fournit des données relatives à l'impact environnemental de chacune de ces phases. L'A.C.V., vaste et complexe, comporte dans certains cas des approximations. Les résultats permettent de connaître les paramètres environnementaux les plus importants dans le cycle de vie du produit.

LES THÈMES

L'information environnementale sur le produit traite de l'impact :

- des matériaux : extraction et transformation des matières premières entrant dans la constitution du véhicule.
- de la production : activités de fabrication des usines, de la production des composants chez les fournisseurs et du transport interne des pièces.
- de la phase d'utilisation : production et consommation d'énergie électrique par le véhicule. Des essais d'homologation effectués pour chacun des types de moteurs et d'essais routiers permettent d'établir les effets de la consommation d'énergie. En fonction des conditions d'utilisation, la consommation d'énergie réelle d'un camion peut être différente de celle indiquée par les résultats.
- de la maintenance : consommables et matériaux utilisés dans la maintenance préventive et la production des pièces (impact calculé d'après des valeurs moyennes).
- de la fin de vie : élimination des produits, gestion des déchets et recyclage des matériaux du camion.
 Après leur vie sur le véhicule, les batteries des véhicules électriques auront une seconde vie pour du stockage stationnaire d'électricité, avant d'être recyclées.

LES RÉSULTATS

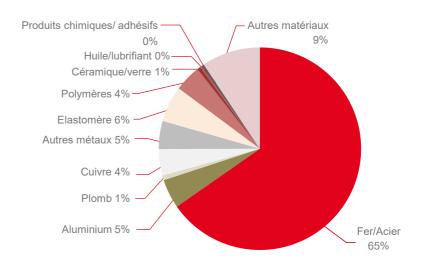

Les résultats présentés comprennent :

- · le bilan matière du véhicule
- les taux de recyclabilité et de valorisabilité selon la norme ISO 22628
- les résultats d'inventaire, qui présentent les données sur les ressources utilisées et les émissions (rejets et déchets)
- · l'évaluation du potentiel de réchauffement global.

LES VALEURS DE RÉFERENCE

Les résultats de l'analyse de cycle de vie varient considérablement selon les données utilisées pour les calculs, les plus importantes étant la consommation d'énergie, le kilométrage, le type de moteur et la qualité du carburant. Les résultats présentés ici sont basés sur des valeurs de référence pour un camion **Renault Trucks E-TECH D WIDE**, un porteur 6x2 carrossé pour la distribution urbaine, sur l'ensemble de son cycle de vie. Il est important de souligner que la consommation d'énergie ainsi que le kilométrage peuvent varier de manière considérable selon les conditions d'utilisation.

MÉTHODE


DONNÉES SERVANT AUX CALCULS

Modèle Type de de véhicule		Puissance	Nombre de batteries	Distance (km)	Date initiale	Date maj
Renault Trucks E-Tech D Wide	Porteur 6x2	370 kW	4	750 000	2019	2023

LISTE DES MATÉRIAUX

Liste des matériaux utilisés dans le véhicule et pris en compte pour le calcul des analyses de cycle de vie.

Matériaux	kg
Fer/acier	6091
Aluminium	435,1
Plomb	71,75
Cuivre	393,2
Autres métaux	417,4
Elastomères	536,2
Polymères	395,75
Céramique/verre	50,9
Huile/lubrifiant	26,6
Produits chimiques/ adhésifs	34,1
Other materials	874,4
TOTAL	9326,6

TAUX DE RECYCLABILITÉ ET DE VALORISABILITÉ

Les véhicules sont conçus pour une réutilisation maximale des matériaux.

Taux de recyclabilité* 92,8 %	
Taux de valorisabilité* 97,6 %	

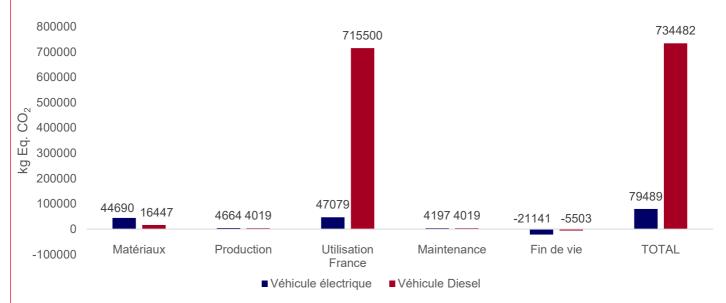
^{*} calculs selon la norme ISO 22628 : Le taux de valorisabilité est le pourcentage en masse d'un véhicule potentiellement apte à être réutilisé, recyclé ou valorisé énergétiquement (incinération avec récupération d'énergie) ; il est donc toujours supérieur au taux de recyclabilité.

RÉSULTATS D'INVENTAIRE

	Unité	Materiaux	Production	Consomma- tion d'éner- gie	Mainte- nance	Fin de vie	Total
Electricité renouvelable	MWh	11,41	4,60		4,87	0,67	17
Electricité non renouvelable	MWh	9,55	15,08		0,284	0,50	25
Autre énergie renouvelable	MWh	0,037	0,0000		0,000	-0,0001	0
Autre énergie non renouvelable	MWh	107,7	42,1		2,6	-36,1	116
Matériaux	kg	9902	0		316	-8102	2117
CO	kg	122,9	3,19		1,8	-86,1	42
CO ₂	kg	42456	4431		3987	-20084	75514
HC/VOC	kg	87,1	27,6		1,7	-30,9	85
Nox	kg	75,5	15,31		1,7	-20,83	72
SO ₂	kg	363,5	6,71		1,9	-80,7	291
Particules	kg	27,98	1,86	Selon le	0,39	-5,65	25
Demande Biologique en Oxygène	kg	17,06	0,01	pays et la source d'énergie	0,03	-0,27	17
Demande Chimique en Oxygène	kg	26,00	9,96		0,46	0,21	37
Equiv. CO ₂	kg	44690	4664		4197	-21141	79489
Utilisation d'eau hors refroidissement	m3		3,95				
Utilisation d'eau, refroidissement	m3		0,08				
Déchets traités	kg		133,58				
Déchets en décharge	kg		0,22				
Déchets dangereux traités	kg		78,96				
Déchets dangereux en décharge	kg		0,57				

RÉSULTATS D'INVENTAIRE

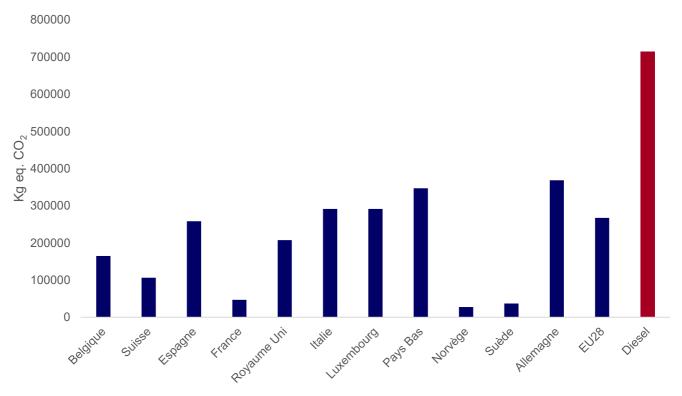
	Unité	BE	СН	SP	FR	GB	IT	LU	NL	NO	SW	DE	EU28
Electricité renouvelable	MWh	468,9	683,54	959,17	286,32	410,54	1024,01	916,71	376,04	993,21	719,73	774,40	617,57
Electricité non renouvelable	MWh	1069	935,76	514,82	1818,10	509,03	181,02	532,86	175,95	30,46	856,41	412,98	685,91
Autre énergie renouvelable	MWh	0	0	0	0	0	0	0	0	0	0	0	0
Autre énergie non renouvelable	MWh	627,3	249,76	842,17	134,76	1280,27	1125,04	1304,66	1407,70	45,34	64,22	1240,72	957,75
Matériaux	kg	0	0	0	0	0	0	0	0	0	0	0	0
CO	kg	151	75	161,71	36,99	278,12	209,10	227,41	150,88	15,30	137,15	234,21	238,67
CO ₂	kg	156817	101038	245326	44725	197298	276888	276888	329719	26179	35030	350302	254246
HC/VOC	kg	333,7	166,88	640,98	94,41	976,42	1007,23	643,02	816,30	19,26	49,83	656,28	619,77
Nox	kg	238,2	138,66	515,81	93,10	691,62	386,30	420,18	418,15	15,43	69,39	492,20	461,83
SO ₂	kg	87	76,90	394,45	71,91	521,78	266,58	220,32	173,34	7,06	37,19	289,49	498,77
Particules	kg	23,85	20,21	54,40	12,01	70,65	42,73	66,37	59,60	2,13	9,37	90,88	74,34
Demande biologique en oxygène	kg	0,4	0,43	0,26	0,15	0,92	1,60	1,37	0,70	0,02	0,07	1,51	0,74
Demande chimique en oxygène	kg	149,76	106,65	361,30	31,31	45,9	270,07	423,79	490,13	4,11	7,78	619,07	358,45
Equiv. CO ₂	kg	165070	106355	258238	47079	207682	291461	291461	347072	27557	36874	368739	267627


Évaluation de l'impact sur l'environnement

L'évaluation de l'impact d'un produit pendant toute sa durée de vie permet d'établir quels aspects doivent être étudiés pour en améliorer la performance environnementale globale. Cette évaluation peut être qualitative mais aussi quantitative grâce à des méthodes et des outils adaptés.

POTENTIEL DE RÉCHAUFFEMENT GLOBAL

L'analyse de cycle de vie permet également de déterminer le potentiel de réchauffement global du véhicule tout au long de sa vie. Ce potentiel correspond aux émissions des différents gaz à effet de serre qui influencent le système climatique. Il est exprimé en quantité équivalente de dioxyde de carbone (kg equiv. CO₂).


ÉMISSIONS DU CYCLE DE VIE

Potentiel de réchauffement global pour les cycles de vie du Renault Trucks E-Tech D WIDE.

Évaluation de l'impact sur l'environnement

Émissions lors de la phase d'utilisation, issues de la production d'électricité – équivalent CO₂ Moyenne nationale et comparaison avec le Diesel

Principaux marchés du Renault Trucks E-Tech D WIDE.

Évaluation de l'impact sur l'environnement

COMMENTAIRES

Sur l'ensemble du cycle de vie d'un camion éléctrique, les matériaux, dont les batteries, représentent une part significative des émissions de gaz à effet de serre, comparé à un véhicule diesel.

En passant à l'électrique, la réduction de l'impact climatique du camion pendant cette phase d'utilisation peut être extrêmement importante en fonction de la sélection de la source primaire de cette énergie et de son origine de production.

Les analyses permettent de mettre en évidence que l'électricité produite à partir de charbon aura un fort impact carbone contrairement à celle produite à partir des énergies nucléaire ou renouvelables. Les résultats sur l'ensemble du cycle de vie diffèrent selon les combinaisons énergétiques nationales au sein de l'Union européenne mais montrent un gain dans tous les pays qui devrait s'accroître au gré des progrès de la décarbonation.

Alimenté par une électricité faiblement carbonée, le **Renault Trucks E-Tech D WIDE** affiche un abaissement significatif des émissions en équivalent CO₂ de son cycle de vie, jusqu'à 90 %.

En développant sa gamme de véhicules électriques E-Tech, Renault Trucks contribue à la réduction substantielle des émissions de CO₂ de ses produits sur l'ensemble de leur vie. Renault Trucks poursuit ses efforts pour réduire l'impact environnemental des batteries en garantissant la qualité de l'approvisionnement en matériaux et celle du recyclage ainsi qu'en recourant à de nouvelles technologies.

Renault Trucks prépare une gestion des batteries conforme aux principes de l'économie circulaire. Après leur première vie de service les batteries seront reconditionnées et réemployées sur les camions. Elles seront ensuite converties pour d'autres applications que celles de la mobilité, en particulier le stockage stationnaire d'électricité, puis recyclées en fin de vie avec réinjection des matériaux récupérés dans la fabrication de nouvelles unités.

