INFORMATION ENVIRONNEMENTALE

RENAULT TRUCKS E-TECH T 4X2

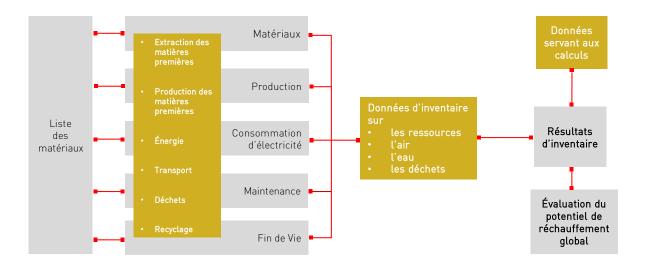
L'information environnementale sur le produit est issue des analyses de cycle de vie (A.C.V.) réalisées sur nos véhicules. L'analyse de cycle de vie couvre toutes les phases de vie d'un camion, depuis la production des matières premières jusqu'à l'élimination finale et au recyclage. Elle fournit des données relatives à l'impact environnemental de chacune de ces phases. L'A.C.V., vaste et complexe, comporte dans certains cas des approximations. Les résultats permettent de connaître les paramètres environnementaux les plus importants dans le cycle de vie du produit.

LES THÈMES

L'information environnementale sur le produit traite de l'impact :

- des matériaux : extraction et transformation des matières premières entrant dans la constitution du véhicule.
- **de la production :** activités de fabrication des usines, de la production des composants chez les fournisseurs et du transport interne des pièces.
- de la phase d'utilisation : production et consommation d'énergie électrique par le véhicule. Des essais d'homologation effectués pour chacun des types de moteurs et d'essais routiers permettent d'établir les effets de la consommation d'énergie. En fonction des conditions d'utilisation, la consommation d'énergie réelle d'un camion peut être différente de celle indiquée par les résultats.
- **de la maintenance :** consommables et matériaux utilisés dans la maintenance préventive et la production des pièces (impact calculé d'après des valeurs moyennes).
- de la fin de vie : élimination des produits, gestion des déchets et recyclage des matériaux du camion.

LES RÉSULTATS

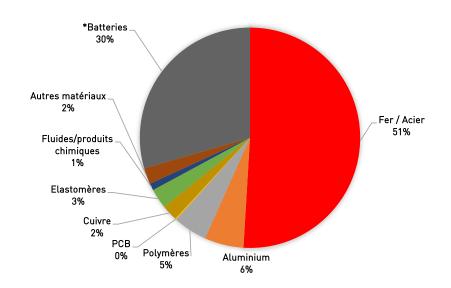

Les résultats présentés comprennent :

- le bilan matière du véhicule
- les taux de recyclabilité et de valorisabilité selon la norme ISO 22628
- les résultats d'inventaire, qui présentent les données sur les ressources utilisées et les émissions (rejets et déchets)
- l'évaluation du potentiel de réchauffement global.

LES VALEURS DE RÉFERENCE

Les résultats de l'analyse de cycle de vie varient considérablement selon les données utilisées pour les calculs, les plus importantes étant la source de production de l'électricité, sa consommation et le kilométrage. Les résultats présentés ici sont basés sur des valeurs de référence pour un camion **Renault Trucks E-Tech T Électrique**, un **tracteur 4x2** destiné à la distribution régionale, sur l'ensemble de son cycle de vie.

MÉTHODE


DONNÉES SERVANT AUX CALCULS

Modèle de véhicule	Puissance	Nombre de batteries	Type de véhicule	Distance (km)		
Renault Trucks E-Tech T	490 kW	6 x 90 kWh	tracteur 4x2	700 000		

Liste des matériaux

Liste des matériaux utilisés dans le véhicule et pris en compte pour le calcul des analyses de cycle de vie.

Matériaux	kg
Fer/acier	5185
Aluminium	585
Polymères	509
PCB	17
Cuivre	238
Elastomères	298
Fluides, produits chimiques	103
Autres matériaux	242
*Batteries	3000
TOTAL	10177

^{*} Batteries lithium-ion NCA

Taux de recyclabilité et de valorisabilité

Les véhicules sont conçus pour une réutilisation maximale des matériaux.

Taux de recyclabilité* 92,5 % Taux de valorisabilité* 97,6 %

Résultats d'inventaire

	Unité	Materiaux	Production	Utilisation	Maintenance	Fin de vie	Total
Electricité renouvelable*	MWh	11,46	5,85		4,08	-0,44	1258
Electricité non renouvelable*	MWh	0,05	3,02		1,566	-0,16	5
Autre énergierenouvelable*	MWh	0,003	0		0	0,0036	0
Autre énergie non renouvelable*	MWh	95,7	201,1		16,8	-23,3	10378
Matériaux	kg	10179	0		927	-6015	5091
CO*	kg	96,2	19,1		1,8	-51,9	77
CO ₂ *	kg	22913	634		2893	-6490	26138
HC/VOC*	kg	60,3	6,9	selon le pays et la source	8,7	-18,8	60
NOx*	kg	52,1	4	d'énergie	6,8	-12,97	54
SO ₂ *	kg	59,2	2,4		4,6	-14,7	55
Particules*	kg	16,83	0,67		1,25	-6,19	16
Demande biologique en oxygène*	kg	0,73	0,13		0,17	0,04	1
Demande chimique en oxygène*	kg	12,22	2,81		1,57	-0,07	18
Equiv. CO ₂ *	kg	25511	5077		4542	-7150	34258
Equiv. CO ₂	kg	56766	5077		4542	-16630	56034
Utilisation d'eau - hors refroidissement	m³		8,66				
Utilisation d'eau - refroidissement	m³		2,17				
Déchets traités	kg		339,16				
Déchets en décharge	kg		10,21				
Déchets dangereux traités	kg		193,54				
Déchets dangereux en décharge	kg		4,7				

^{*} calculs selon la norme ISO 22628 : Le taux de valorisabilité est le pourcentage en masse d'un véhicule potentiellement apte à être réutilisé, recyclé ou valorisé énergétiquement (incinération avec récupération d'énergie) ; il est donc toujours supérieur au taux de recyclabilité.

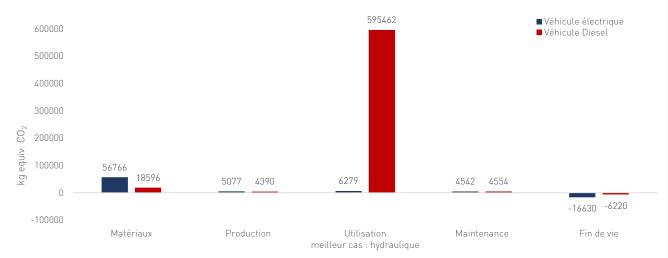
Résultats d'inventaire

En fonction des pays

	Unité	BE	СН	SP	FR	GB	IT	LU	NL	NO	SW	DE	EU28
Electricité renouvelable	MWh	648	1086	1123	456	1052	1298	1184	592	1320	1023	1263	932
Electricité non renouvelable	MWh	1226	929	717	1932	679	167	592	144	30	1079	391	758
Autre énergie renouvelable	MWh	0	0	0	0	0	0	0	0	0	0	0	0
Autre énergie non renouvelable	MWh	771	495	1389	356	1230	1666	1297	1814	62	70	1545	1264
Matériaux	kg												
CO	kg	146	121	270	76	379	302	271	174	20	198	317	313
CO ₂	kg	201579	177361	386677	97911	297629	413208	433701	487705	31695	40882	524052	382625
HC/V0C	kg	350	282	963	204	742	1382	670	960	24	57	792	762
NOx	kg	236	207	640	160	427	419	469	445	17	85	554	464
S0 ₂	kg	62	95	478	90	201	185	205	116	7	43	244	364
Particules	kg	18	22	55	16	29	35	51	51	5	19	62	51
Demande biologique en oxygène	kg	0	0	0	0	0	1	0	0	0	0	0	0
Demande chimique en oxygène	kg	111	171	507	68	53	275	514	525	5	7	650	420
Equiv. CO ₂	kg	210945	185055	414341	103186	312196	447280	451989	514041	32364	42718	545922	402819

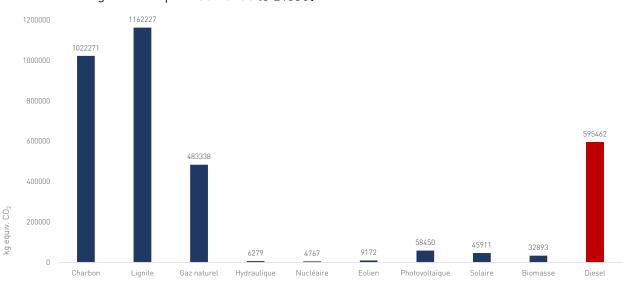
En fonction de la source d'énergie

	Unité	Charbon	Lignite	Gaz naturel	Hydraulique	Nucléaire	Eolien	Piles solaires photovoltaïques	Solaire thermique	Biomasse
Electricité renouvelable	MWh	13	23	7	1237	1	2579	6186	9185	2735
Electricité non renouvelable	MWh	9	13	2	0	2957	2	27	28	5
Autre énergie renouvelable	MWh	0	0	0	0	0	0	0	0	0
Autre énergie non renouvelable	MWh	2807	2915	2312	7	24	31	187	144	99
Matériaux	kg									
СО	kg	187	795	185	12	6	31	77	93	2925
CO ₂	kg	952154	1141468	458678	6189	4432	8733	54340	42010	23923
HC/VOC	kg	2386	532	924	3	14	16	192	86	246
NOx	kg	1313	929	326	4	19	12	94	79	874
SO ₂	kg	836	964	38	3	19	12	120	47	432
Particules	kg	152	159	10	3	6	4	19	10	81
Demande biologique en oxygène	kg	0	0	1	0	0	0	1	0	0
Demande chimique en oxygène	kg	1833	1743	10	1	1	4	39	23	563
Equiv. CO ₂	kg	1022271	1162227	483338	6279	4767	9172	58450	45911	32893


ÉVALUATION DE L'IMPACT SUR L'ENVIRONNEMENT

L'évaluation de l'impact d'un produit pendant toute sa durée de vie permet d'établir quels aspects doivent être étudiés pour en améliorer la performance environnementale globale. Cette évaluation peut être qualitative mais aussi quantitative grâce à des méthodes et des outils adaptés.

POTENTIEL DE RÉCHAUFFEMENT GLOBAL


L'analyse de cycle de vie permet également de déterminer le potentiel de réchauffement global du véhicule tout au long de sa vie. Ce potentiel correspond aux émissions des différents gaz à effet de serre qui influencent le système climatique. Il est exprimé en quantité équivalente de dioxyde de carbone (kg equiv. CO₂).

Émissions du cycle de vie - équCO2

Potentiel de réchauffement global pour les cycles de vie du Renault Trucks E-Tech T tracteur 4x2. Les émissions en phase d'utilisation font apparaître la meilleure solution.

Émissions de la phase d'utilisation issues de la production d'électricité - équCO₂ Sources d'énergie et comparaison avec le Diesel

ÉVALUATION DE L'IMPACT SUR L'ENVIRONNEMENT

COMMENTAIRES

Sur l'ensemble du cycle de vie d'un camion éléctrique, les matériaux, dont les batteries, représentent l'essentiel des émissions de gaz à effet de serre tandis que la phase d'utilisation, très largement prédominante pour un véhicule Diesel. est moindre.

En passant à l'électrique, la réduction de l'impact climatique du camion pendant cette phase d'utilisation peut être extrêmement importante en fonction de la sélection de la source primaire de cette énergie et de son origine de production.

Les analyses permettent de mettre en évidence que l'électricité produite à partir de charbon aura un fort impact carbone contrairement à celle produite à partir des énergies nucléaire ou renouvelables. Les résultats sur l'ensemble du cycle de vie diffèrent selon les combinaisons énergétiques nationales au sein de l'Union européenne mais montrent un gain dans tous les pays qui devrait s'accroître au gré des progrès de la décarbonation.

Alimenté par une électricité faiblement carbonée, d'origine hydraulique dans le meilleur des cas, le **Renault Trucks E-Tech T tracteur 4x2** affiche un abaissement significatif des émissions en équivalent CO₂ de son cycle de vie supérieur à 90 %.

En développant sa gamme de véhicules électriques E-Tech, Renault Trucks contribue à la réduction substantielle des émissions de CO₂ de ses produits sur l'ensemble de leur vie. Renault Trucks poursuit ses efforts pour réduire l'impact environnemental des batteries en garantissant la qualité de l'approvisionnement en matériaux et celle du recyclage ainsi qu'en recourant à de nouvelles technologies.

Renault Trucks prépare une gestion des batteries conforme aux principes de l'économie circulaire. Après leur première vie de service les batteries peuvent être reconditionnées et remployées sur les camions. Usagées, elles seront converties pour d'autres applications que celles de la mobilité, puis recyclées en fin de vie avec réinjection des matériaux récupérés dans la fabrication de nouvelles unités.

RENAULT TRUCKS

Renault Trucks est engagé pour le progrès de la mobilité durable des marchandises et œuvre à la réduction des effets de ses produits sur l'environnement. Les véhicules Renault Trucks sont conçus pour garantir à la fois une conformité aux législations limitant les rejets atmosphériques et une consommation de carburant toujours moindre réduisant ainsi les émissions de dioxyde de carbone.

Outre des solutions de transport toujours plus économes en carburant, Renault Trucks offre une gamme complète de véhicules à énergies de substitution : 100 % électriques ; véhicules au gaz naturel : biodiesel .

Renault Trucks applique une politique environnementale assise sur des engagements précis et un système de management rigoureux associant son réseau de distributeurs, ses fournisseurs et ses partenaires. La fabrication des véhicules de Renault Trucks est réalisée dans des usines certifiées ISO 14001. Elle est organisée pour limiter la consommation d'énergie, d'eau et de matières premières mais également pour réduire la production de déchets. Les produits sont conçus en vue d'une réutilisation maximale des matériaux.

