

Information environnementale

Renault Trucks

Renault Trucks est engagé pour le progrès de la mobilité durable des marchandises et œuvre à la réduction des effets de ses produits sur l'environnement. Les véhicules Renault Trucks sont conçus pour garantir à la fois une conformité aux législations limitant les rejets atmosphériques et une consommation de carburant toujours moindre réduisant ainsi les émissions de dioxyde de carbone.

Outre des solutions de transport toujours plus économes en carburant, Renault Trucks offre une gamme complète de véhicules à énergies de substitution : 100 % électriques ; véhicules au gaz naturel ; biodiesel.

Renault Trucks applique une politique environnementale assise sur des engagements précis et un système de management rigoureux associant son réseau de distributeurs, ses fournisseurs et ses partenaires. La fabrication des véhicules de Renault Trucks est réalisée dans des usines certifiées ISO 14001. Elle est organisée pour limiter la consommation d'énergie, d'eau et de matières premières mais également pour réduire la production de déchets. Les produits sont conçus en vue d'une réutilisation maximale des matériaux.

Information environnementale sur le produit

L'information environnementale sur le produit est issue des analyses de cycle de vie (A.C.V.) réalisées sur nos véhicules. L'analyse de cycle de vie couvre toutes les phases de vie d'un camion, depuis la production des matières premières jusqu'à l'élimination finale et au recyclage. Elle fournit des données relatives à l'impact environnemental de chacune de ces phases. L'A.C.V., vaste et complexe, comporte dans certains cas des approximations. Les résultats permettent de connaître les paramètres environnementaux les plus importants dans le cycle de vie du produit.

LES THÈMES

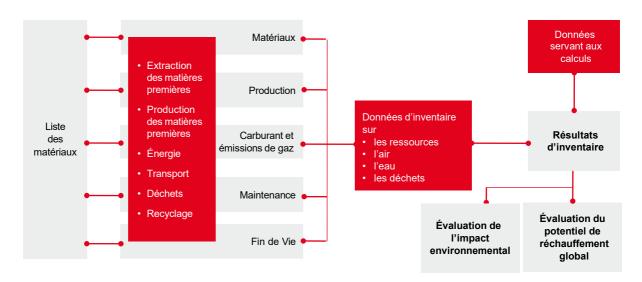
L'information environnementale sur le produit traite de l'impact :

- des matériaux : extraction et transformation des matières premières entrant dans la constitution du véhicule.
- de la production : activités de fabrication des usines, de la production des composants chez les fournisseurs et du transport interne des pièces.
- du carburant et des émissions de gaz : extraction et production de carburant consommé par le véhicule et émissions de gaz d'échappement engendrées par sa combustion. Des essais d'homologation effectués pour chacun des types de moteurs et d'essais routiers permettent d'établir les effets de la combustion de carburant. En fonction des conditions d'utilisation, les émissions réelles d'un camion peuvent être différentes des résultats indiqués.
- de la maintenance : consommables et matériaux utilisés dans la maintenance préventive et la production des pièces (impact calculé d'après des valeurs moyennes).
- de la fin de vie : élimination des produits, gestion des déchets et recyclage des matériaux du camion.

LES RÉSULTATS

Les résultats présentés comprennent :

le bilan matière du véhicule

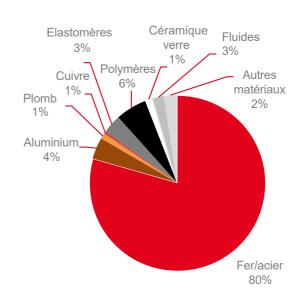

- les taux de recyclabilité et de valorisabilité selon la norme ISO 22628
- les résultats d'inventaire, qui présentent les données sur les ressources utilisées et les émissions (rejets et déchets)
- l'évaluation de l'impact sur l'environnement, basée sur la méthode EPS (Environmental Priority Strategies)
- · l'évaluation du potentiel de réchauffement global..
- · the assessment of the potential contribution to global warming.

LES VALEURS DE RÉFERENCE

Les résultats de l'analyse de cycle de vie varient considérablement selon les données utilisées pour les calculs, les plus importantes étant la consommation de carburant, le kilométrage, le type de moteur et la qualité du carburant. Les résultats présentés ici sont basés sur des valeurs de référence pour un camion **Renault Trucks D Wide**, un porteur 4x2 destiné à la distribution, sur l'ensemble de son cycle de vie. Il est important de souligner que la consommation de carburant et sa qualité, ainsi que le kilométrage peuvent varier de manière considérable selon les conditions d'utilisation.

Information environnementale sur le produit

MÉTHODE


DONNÉES SERVANT AUX CALCULS

Modèle de véhicule	Niveau d'émission	Type de moteur	Type de véhicule	Distance (km)	Date initiale	Date maj
Renault Trucks D WIDE	Euro VI	81; 280 ch	Porteur 4x2	750 000	2013	2023

LISTE DES MATÉRIAUX

Liste des matériaux utilisés dans le véhicule et pris en compte pour le calcul des analyses de cycle de vie.

Matériaux	kg
Fer/acier	4 912
Aluminium	246
Plomb	64
Cuivre	33
Autres métaux	4,3
Élastomères	209
Polymères	354
Céramique/verre	88
Huile/lubrifiant	56
Liquide de refroidissement	36
Fluides des batteries	24
Produits chimiques/adhésifs	16
Réfrigérant R134a	1,28
Autres matériaux	140
TOTAL	6183

Information environnementale sur le produit

TAUX DE RECYCLABILITÉ ET DE VALORISABILITÉ

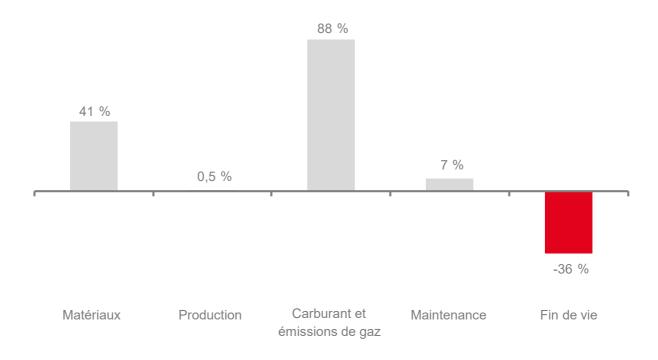
Les véhicules sont conçus pour une réutilisation maximale des matériaux.

Taux de recyclabilité* 96 %	
Taux de valorisabilité* 99 %	

^{*} calculs selon norme ISO 22628 : Le taux de valorisabilité est le pourcentage en masse d'un véhicule potentiellement apte à être réutilisé, recyclé ou valorisé énergétiquement (incinération avec récupération d'énergie) ; il est donc toujours supérieur au taux de recyclabilité.

RÉSULTATS D'INVENTAIRE

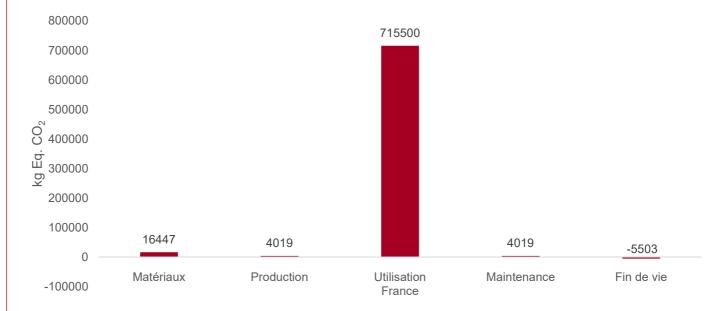
	Unité	Matériaux	Production	Carburants et émissions de gaz	Maintenance	Fin de vie	Total
Électricité renouvelable	MWh	3,02	1,40	97	2,20	-1,30	102
Électricité non renouvelable	MWh	2,65	4,02	9,5	0,602	-1,33	15
Autre énergie renouvelable	MWh	0,064	0,0122	0,182	0,063	-0,0133	0,31
Autre énergie non renouvelable	MWh	37,4	10,5	324	15,6	-9,5	377
Matériaux	kg	6183	0	0	2273	-5166	3290
СО	kg	63,1	1,40	169	14,3	-52,2	195
CO ₂	kg	15625	3818	679725	3818	-5228	697758
HC/VOC	kg	30,9	8,0	908	11,8	-12,8	946
NOx	kg	18,1	4,82	276	16,7	-5,02	310
SO ₂	kg	52,4	4,23	361	13,6	-34,5	397
Particules	kg	7,62	0,34	23,8	2,03	-3,46	30
Utilisation d'eau (hors refroidissement)	kg	92,0	10,0	437	37,7	-41,4	536
Utilisation d'eau refroidissement	kg	16,6	17,6	104	3,14	-8,41	133
Demande biologique en oxygène	kg	1,91	0,81	5,5	0,83	-0,10	9
Demande Chimique en oxygène	m3	5,41	1,74	16,4	1,63	-1,32	24
Déchets non dangereux traités	m3	151	507	0	18,8	-151	526
Déchets non dangereux mis en décharge	kg	469	13	0	36,4	-99	420
Déchets dangereux traités	kg	1,48	195	0	0,0064	-1,44	195
Déchets dangereux en décharge	kg	57,0	0,9	0	14,1	-45,6	26


Évaluation de l'impact sur l'environnement

L'évaluation de l'impact d'un produit pendant toute sa durée de vie permet d'établir quels aspects doivent être étudiés pour en améliorer la performance environnementale globale. Cette évaluation peut être qualitative mais aussi quantitative grâce à des méthodes et des outils adaptés.

LE SYSTÈME EPS

L'outil EPS (Environmental Priority Strategies) utilisé par Renault Trucks permet de calculer l'impact environnemental de chaque activité ou processus faisant partie du cycle de vie. Il s'exprime en unités de charge environnementale (ELU - Environmental Load Units).


Le schéma ci-dessous illustre la répartition de l'impact environnemental d'un camion **Renault Trucks D WIDE** utilisé pour la distribution, obtenue avec la méthode EPS.

La consommation de carburant et les émissions de gaz qui en résultent constituent l'essentiel de l'impact. Les matériaux utilisés pour la construction du véhicule et notamment ceux introduits pour répondre à la norme Euro VI ont une part significative cependant compensée par leur taux élevé de recyclage.

Potentiel de réchauffement global

L'analyse de cycle de vie permet également de déterminer le potentiel de réchauffement global du véhicule tout au long de sa vie. Ce potentiel correspond aux émissions des différents gaz à effet de serre qui influencent le système climatique. Il est exprimé en quantité équivalente de dioxyde de carbone (kg equiv. CO₂).

La consommation de carburant et les émissions de gaz qui en résultent constituent le principal facteur affectant le réchauffement climatique. C'est pourquoi Renault Trucks fait de l'efficience énergétique un des axes fondamentaux du développement de ses produits.

CONSOMMATION DE CARBURANT

Renault Trucks conçoit ses véhicules pour qu'ils procurent la consommation de carburant la plus réduite possible et développe une offre associée de services destinés à l'améliorer en permanence. Les Solutions Optifuel permettent de configurer et d'équiper les véhicules de manière optimale (Optifuel Technology), de former les chauffeurs à l'éco-conduite (Optifuel Training), de mesurer et d'analyser la consommation des camions sur le long terme grâce à des logiciels adaptés (Optifuel Infomax ; Optifleet) et d'agir sur leur performance tout au long de leur exploitation par des mises à jour (Optifuel Retrofit).

Enfin, une offre d'applications informatiques pour terminaux de poche aide les conducteurs à rendre leur mission plus efficace.

Pour en savoir plus sur le développement durable chez Renault Trucks : Développement durable | Renault Trucks Corporate (renault-trucks.com)

